ww.everede.net

One Tool Performs Multiple Applications

K P M N S

NC Helix Drill Helical Interpolation

Principle

ม17n g.

NC Helix Drill Milling, Drilling \& Slotting

Cuts material by helical interpolation; serrated cutting edge minimizes chip length. Low spindle power is required, good for drilling material that generates long, soft chips.

20° Ramping Angle

Either linear or circular ramping.

Reduce Your Tool Inventory

Only six tools for making Ø .512"~Ø2.65" (Ø13~Ø65mm) hole from solid.

Each holder can machine different diameters and hole depths, saving your tool inventory and cost! No need to peck drill or dwell in operation, even without internal coolant.

Contents
 Insert
 03
 Holder $2=03$
 Technical Guide крmмs " 05
 Application

01

Feature
<Page 11>

Lower Spindle Power Consumption

 Easy to cut!
© Thanks to the small cutting load of the serrated cutting edge and helical interpolation, low power consumption of the spindle is required.

- Circular ramping milling, maximum ramping angle is 20°. For example: tool HD27 machining Ø1.969" (50 mm) hole, . $354^{\prime \prime}$ (9 mm) pitch for aluminum, $.236^{\prime \prime}$ (6 mm) pitch for carbon steel.

Feature
<Page 11>

Example:

Only six tools for drilling

 Ø.512"~Ø2.65" ($\varnothing 13 \sim 65 \mathrm{~mm}$)Example

- Cuts by helical interpolation.
: Each holder can machine different diameters and hole depths.

03

Feature
<Page 10>

Special insert geometry for cutting different materials

Serrated cutting edge makes the chips short and small, and easier to evacuate.
© Eliminate swarf and vibration problems while drilling difficult or deep holes.

One tool performs multiple applications

- Not only a drill, but an end mill too.
- Small radius path to cut a hole or step hole, various curved cavity shapes on different materials.

Roughness Measuring

Feature <Page 10> 06

Workpiece
Make "One more turn" after reached the depth.
Ex:
\vdots
G03 I-1.5 Z-30 P5
G03 I-1.5 <make one more turn >
G01 X0 Y0 < afterward, let tool back to center of hole >

Flatness

Specification

Insert

NC2032 : For general purpose. Suitable for almost any material. Top recommendation is $2 \times \mathrm{Dc}$ machining, high performance cutting.

Holder
 Cylindrical Shank

- Helical chip-removing groove >>

- Designed for CNC machines with external coolant
- Unique helical groove design generates chip-removing coolant stream.
- The helical groove is designed for the coolant to remove swarf from the cutting zone.
- For horizontal machining, it is necessary to increase coolant volume.

$3 \longdiv { } 3$ 99321-025-4265 is $\varnothing 0.984$ " Side Lock Shank with internal coolant. * Maximum ramping angle refers to maximum pitch. Please see page 6 .

Screw Fit Cutter

- Internal Coolant

- Designed for CNC machines with internal coolant.
- Standard screw-fit body adapts to almost any kind of the screw-fit tool holder or extension bar in the market.
- Use for enlarge hole.
* Use open ended spanner

Ordering Code	Type	Capable of drill dia. mm		ØDc	ØD1	L	M	DPM	SW	Insert type	* Max. ramping angle
		Dmin.	Dmax.								
99323-010-1320	M05-HD11-1320	$\begin{aligned} & .512 " \\ & (13) \end{aligned}$	$\begin{gathered} .787 " \\ (20) \end{gathered}$	$\xrightarrow[(11)]{.433)^{\prime}}$	$\begin{gathered} \text { (10) } \end{gathered}$	$\begin{gathered} .787 " \\ (20) \end{gathered}$	M5	$\xrightarrow[(5.5)]{.217 "}$	$\begin{gathered} .315 " \\ (8) \end{gathered}$	N9MX04T002	20°
99323-012-1525	M06-HD13-1525	$\begin{gathered} .591 " \\ (15) \end{gathered}$	$\begin{gathered} .984 " \\ (25) \end{gathered}$	$\begin{aligned} & .512 " \\ & (13) \end{aligned}$.472"	$\begin{gathered} .984 " \\ (25) \end{gathered}$	M6	$.$	(10)	N9MX05T103	20°
99323-016-2030	M08-HD17-2030	$\begin{gathered} .787 " \\ (20) \end{gathered}$	$\begin{gathered} 1.181 " \\ (30) \end{gathered}$	$\begin{gathered} .669 " \\ (17) \end{gathered}$	$\begin{aligned} & .630 " \\ & (16) \end{aligned}$	$\begin{gathered} .984 " \\ (25) \end{gathered}$	M8	$\begin{aligned} & .335 " \\ & \hline(8.5) \end{aligned}$	$\begin{gathered} .551 " \\ (14) \end{gathered}$	N9MX070204	20°
99323-020-2540	M10-HD22-2540	$\begin{gathered} .984 " \\ (25) \end{gathered}$	$\begin{gathered} 1.575 " \\ (40) \end{gathered}$	$\begin{gathered} .866 " \\ (22) \end{gathered}$	$\begin{gathered} .787 " \\ (20) \end{gathered}$	$\begin{gathered} 1.181 " \\ (30) \end{gathered}$	M10	$\begin{aligned} & .413 " \\ & (10.5) \end{aligned}$	$\begin{aligned} & .709 " \\ & (18) \end{aligned}$	N9MX100306	20°
99323-025-3050	M12-HD27-3050	$\begin{gathered} 1.181 " \\ (30) \end{gathered}$	$\begin{gathered} 1.969 " \\ (50) \end{gathered}$	$\begin{gathered} 1.063 " \\ (27) \end{gathered}$	$\begin{gathered} .984 " \\ (25) \end{gathered}$	$\begin{gathered} 1.378 " \\ (35) \end{gathered}$	M12	$\begin{aligned} & .492 " \\ & (12.5) \end{aligned}$	$\begin{aligned} & .906 " \\ & (23) \end{aligned}$	N9MX12T308	20°

* Maximum ramping angle refers to maximum pitch. Please see page 6.

Extension Bar

Steel Type

- T is the maximum overhang length.
- With internal coolant hole.

Ordering Code	Type	бD	T	L	M
$99801-10 S$	BC10-075M05S	$.394^{\prime \prime}(10)$	$.984^{\prime \prime}(25)$	$2.953^{\prime \prime}(75)$	M5
$99801-12 S$	BC12-075M06S	$.472^{\prime \prime}(12)$	$.984^{\prime \prime}(25)$	$2.953^{\prime \prime}(75)$	M6
$99801-16 S$	BC16-090M08S	$.630 "(16)$	$1.378^{\prime \prime}(35)$	$3.543^{\prime \prime}(90)$	M8
$99801-20 S$	BC20-100M10S	$.787^{\prime \prime}(20)$	$1.575^{\prime \prime}(40)$	$3.937^{\prime \prime}(100)$	M10
$99801-25 S$	BC25-120M12S	$.984^{\prime \prime}(25)$	$1.969 "(50)$	$4.724^{\prime \prime}(120)$	M12

Solid Carbide Type

- Insert NC5074 is recommended for deep hole cutting.
- With internal coolant hole.

Ordering Code	Type	$\varnothing \mathrm{D}$	L	M
398010-100M05	M05-BC10-100L	.394" (10)	3.937" (100)	M5
398012-100M06	M06-BC12-100L	.472" (12)	3.937 " (100)	M6
398016-150M08	M08-BC16-150L	.630" (16)	5.906" (150)	M8
398020-200M10	M10-BC20-200L	.787" (20)	7.874" (200)	M10
398025-200M12	M12-BC25-200L	.984" (25)	7.874" (200)	M12

Technical Guide

※ Before you start, please pay attention the following conditions >>

(1) 1	(1) 2	13			! 4	1. 5
Programming	Recommend of Direction Tool path of moving downward by CCW (G03), Tool Rotation by CW direction is recommended.	For Start			Through hole Reduce Vc 50% at last cycle.	Through hole Add 0.039" to the required depth (Z) Failure to program beyond the through hole may result in insert breakage due to the force from circular interpolation.
All NC Helix Drills must be programmed using helical interpolation		${ }_{\substack{\text { Vow } \\ \text { Value }}}^{\text {Ve }}$	$\underset{\substack{\text { Middle } \\ \text { Value }}}{\mathbf{f}}$	Pitch Value		
		Upgra condit		mprove ndition		¢్లె
		Vc		$\text { aij. } 17$		0

- The NC Helix Drill is programmed using "Helical interpolation" on CNC machine, the CNC controller must have 3 -axis simultaneously motion function.

| NC Helix Drill | Cutting Parameters (S \& F) | | Formula | Inch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Technical Guide

※ Before you start, please pay attention the following conditions
Flatness on blind
hole bottom
Make one more turn
after reaching depth.
Ex.
G03 l-1.5 Z-30 P5

A Choosing a suitable drill body.

- Required hole diameter is within the recommended range (blue numbers).
- Required hole diameters (more than one size), choose the drill can cover more different hole diameters. Example 0.709", 0.787" and 0.866" hole diameter, choose 99323-012-1525.
- Hole tolerance : 0/-0.02 inch.

Drilling diameter	Coolant type	Max. drilling depth	Tool type	Dc	Insert type	Re	Max. pitch	Max. Ae
.512"~ .590"~ .787"	Internal	3.150 "	99323-010-1320	.433"	N9MX04T002	.008"	.118"	.417"
	External	1.181"	99321-010-1320	.433"				
.590"~ .787"~ .984"	Internal	3.346 "	99323-012-1525	.512"	N9MX05T103	.012"	.177"	488"
	External	1.417"	99321-012-1525	.512"				
.787"~ .984"~ 1.181"	Internal	4.134"	99323-016-2030	.669"	N9MX070204	.016"	.236"	.638"
	External	1.969"	99321-016-2030	.669"				
. 984 "~ $1.181^{\prime \prime} \sim 1.575^{\prime \prime}$	Internal	5.118"	99323-020-2540	.866"	N9MX100306	.024"	.295"	.819"
	External	2.362 "	99321-020-2540	.866"				
1.181 "~ 1.575"~ 1.969"	Internal	6.299 "	99323-025-3050	1.063 "	N9MX12T308	.031"	.354"	1.000"
	External	2.953 "	99321-025-3050	1.063 "				
1.654" ~ 1.969 " ~ 2.559 "	Internal	1.969"	99321-025-4265	1.299"	N9MX12T308	.031"	.354"	1.236 "

A Choosing a suitable insert grade for hole drilling.

NC2032 for drill depth below 3xDc.

- NC5074 for drill depth 3xDc and above.

© Length of tool path for linear ramping.

Cutting Data >mancomesmen

-99321-010-1320 / 99323-010-1320 >>

Workpiece material		SFM		Ø. $512^{\prime \prime}$		Ø. 551 "		Ø. 630"		Ø.709"		$\varnothing .787^{\prime \prime}$	
		99321		$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\underset{\text { IPR }}{\mathbf{f}}$	Pitch Inch	$\begin{gathered} \text { f } \\ \text { IPR } \end{gathered}$	Pitch Inch
P	Carbon steel 0.25\%C	197~295~426	328~525~722	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{gathered} .0236 \\ .0315 \\ .0394 \end{gathered}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{array}{r} .0276 \\ .0374 \\ .0492 \\ \hline \end{array}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0354 \\ & .0472 \\ & .0591 \end{aligned}$	$\begin{gathered} .0039 \\ .0055 \\ .0071 \end{gathered}$	$\begin{gathered} .0394 \\ .0551 \\ .0689 \end{gathered}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \end{aligned}$
	Carbon steel $0.45 \% \text { C }$	197~295~394	328~492~656	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{aligned} & .0236 \\ & .0315 \\ & .0394 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0492 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0354 \\ & .0472 \\ & .0591 \end{aligned}$	$\begin{gathered} .0039 \\ .0055 \\ .0071 \end{gathered}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0689 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \end{aligned}$
	Carbon steel 0.60\%C	164~230~361	262~426~590	$\begin{aligned} & .0016 \\ & .0020 \\ & .0024 \end{aligned}$	$\begin{aligned} & .0236 \\ & .0295 \\ & .0354 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0354 \\ & .0441 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0315 \\ & .0433 \\ & .0531 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0354 \\ & .0472 \\ & .0618 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0709 \end{aligned}$
	Low alloy steel	131~230~328	262~394~525	$\begin{aligned} & .0012 \\ & .0016 \\ & .0020 \end{aligned}$	$\begin{gathered} .0197 \\ .0256 \\ .0315 \end{gathered}$	$\begin{aligned} & .0020 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0236 \\ & .0315 \\ & .0394 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0472 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0059 \end{aligned}$	$\begin{aligned} & .0315 \\ & .0433 \\ & .0551 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0512 \\ & .0630 \end{aligned}$
	High alloy steel	131~197~262	197~295~394	$\begin{aligned} & .0012 \\ & .0016 \\ & .0020 \end{aligned}$	$\begin{array}{r} .0197 \\ .0256 \\ .0315 \\ \hline \end{array}$	$\begin{aligned} & .0020 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0236 \\ & .0315 \\ & .0394 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0472 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0059 \end{aligned}$	$\begin{aligned} & .0315 \\ & .0433 \\ & .0551 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0512 \\ & .0630 \end{aligned}$
M	Stainless steel	131~197~262	197~295~394	$\begin{aligned} & .0012 \\ & .0016 \\ & .0020 \end{aligned}$	$\begin{array}{r} .0197 \\ .0256 \\ .0315 \\ \hline \end{array}$	$\begin{aligned} & .0020 \\ & .0024 \\ & \hline .0031 \\ & \hline \end{aligned}$	$\begin{aligned} & .0236 \\ & .0315 \\ & .0394 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0472 \end{aligned}$	$\begin{array}{r} .0031 \\ .0043 \\ .0059 \\ \hline \end{array}$	$\begin{aligned} & .0315 \\ & .0433 \\ & .0551 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0063 \\ & \hline \end{aligned}$	$\begin{aligned} & .0394 \\ & .0512 \\ & .0630 \end{aligned}$
K	Cast Iron	131~230~328	262~394~525	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{aligned} & .0236 \\ & .0315 \\ & .0394 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \\ & \hline \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0492 \\ & \hline \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0354 \\ & .0472 \\ & .0591 \\ & \hline \end{aligned}$	$\begin{gathered} .0039 \\ .0055 \\ .0071 \\ \hline \end{gathered}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0689 \\ & \hline \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \\ & \hline \end{aligned}$
N	AI	262~426~590	394~689~984	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \\ & \hline \end{aligned}$	$\begin{array}{r} .0354 \\ .0472 \\ .0591 \\ \hline \end{array}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \\ & \hline \end{aligned}$	$\begin{aligned} & .0433 \\ & .0591 \\ & .0736 \\ & \hline \end{aligned}$	$\begin{array}{r} .0031 \\ .0043 \\ .0055 \\ \hline \end{array}$	$\begin{aligned} & .0512 \\ & .0709 \\ & .0886 \\ & \hline \end{aligned}$	$\begin{gathered} .0039 \\ .0055 \\ .0071 \\ \hline \end{gathered}$	$\begin{aligned} & .0591 \\ & .0827 \\ & .1031 \\ & \hline \end{aligned}$	$\begin{gathered} .0047 \\ .0063 \\ .0079 \\ \hline \end{gathered}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \\ & \hline \end{aligned}$
	Cu	197~344~492	328~558~787	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{gathered} .0276 \\ .0374 \\ .0472 \end{gathered}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0354 \\ & .0472 \\ & .0591 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0709 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0669 \\ & .0827 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{array}{r} .0551 \\ .0748 \\ .0945 \end{array}$
S	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	$\begin{aligned} & .0004 \\ & .0008 \\ & .0012 \end{aligned}$	$\begin{array}{r} .0197 \\ .0256 \\ .0315 \\ \hline \end{array}$	$\begin{aligned} & .0004 \\ & .0008 \\ & .0016 \\ & \hline \end{aligned}$	$\begin{array}{r} .0236 \\ .0315 \\ .0394 \\ \hline \end{array}$	$\begin{aligned} & .0008 \\ & .0012 \\ & .0020 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0472 \end{aligned}$	$\begin{aligned} & .0012 \\ & .0020 \\ & \hline .0028 \\ & \hline \end{aligned}$	$\begin{aligned} & .0315 \\ & .0433 \\ & .0551 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{aligned} & .0354 \\ & .0512 \\ & .0630 \end{aligned}$
	Titanium	98~131~164	131~197~262	$\begin{aligned} & .0004 \\ & .0008 \\ & .0012 \\ & \hline \end{aligned}$	$\begin{gathered} .0197 \\ .0256 \\ .0315 \\ \hline \end{gathered}$	$\begin{aligned} & .0004 \\ & .0008 \\ & .0016 \\ & \hline \end{aligned}$	$\begin{aligned} & .0236 \\ & .0315 \\ & .0394 \\ & \hline \end{aligned}$	$\begin{aligned} & .0008 \\ & .0012 \\ & .0020 \end{aligned}$	$\begin{aligned} & .0276 \\ & .0374 \\ & .0472 \end{aligned}$	$\begin{aligned} & .0012 \\ & .0020 \\ & .0028 \\ & \hline \end{aligned}$	$\begin{aligned} & .0315 \\ & .0433 \\ & .0551 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{aligned} & .0354 \\ & .0512 \\ & .0630 \end{aligned}$

-99321-012-1525 / 99323-012-1525 >>

Workpiece material		SFM		Ø.590"		\varnothing.669"		$\varnothing .787 \prime$		Ø.866"		Ø.984"	
		99321		$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch
P	Carbon steel $0.25 \% C$	197~295~426	328~525~722	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0472 \\ .0630 \\ .0787 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0701 \\ & .0886 \\ & \hline \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0591 \\ & .0787 \\ & .0984 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0858 \\ & .1083 \\ & \hline \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{array}{r} .0709 \\ .0945 \\ .1181 \end{array}$
	Carbon steel $0.45 \% \text { C }$	197~295~394	328~492~656	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0472 \\ .0630 \\ .0787 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0701 \\ & .0886 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0591 \\ & .0787 \\ & .0984 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0858 \\ & .1083 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$
	Carbon steel 0.60\%C	164~230~361	262~426~590	$\begin{aligned} & .0020 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{gathered} .0433 \\ .0591 \\ .0709 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0035 \\ & .0043 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0634 \\ & .0795 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0047 \\ & .0059 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0701 \\ & .0886 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0764 \\ & .0972 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0846 \\ & .1063 \end{aligned}$
	Low alloy steel	131~230~328	262~394~525	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{array}{r} .0394 \\ .0512 \\ .0630 \end{array}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0709 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0709 \\ & .0866 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{array}{r} .0551 \\ .0748 \\ .0945 \end{array}$
	High alloy steel	131~197~262	197~295~394	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{array}{r} .0394 \\ .0512 \\ .0630 \\ \hline \end{array}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0709 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0709 \\ & .0866 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \end{aligned}$
M	Stainless steel	131~197~262	197~295~394	$\begin{aligned} & .0016 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{array}{r} .0394 \\ .0512 \\ .0630 \end{array}$	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0709 \\ & \hline \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \\ & \hline \end{aligned}$	$\begin{aligned} & .0512 \\ & .0709 \\ & .0866 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \end{aligned}$
K	Cast Iron	131~230~328	262~394~525	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0472 \\ .0630 \\ .0787 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0701 \\ & .0886 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0748 \\ & .0984 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0858 \\ & .1083 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$
N	AI	262~426~590	394~689~984	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0709 \\ .0945 \\ .1181 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0787 \\ & .1059 \\ & .1327 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1173 \\ & .1476 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1283 \\ & .1622 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$
	Cu	197~344~492	328~558~787	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0846 \\ & .1063 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0787 \\ & .1043 \\ & .1299 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0827 \\ & .1122 \\ & .1417 \end{aligned}$
S	Ni- Alloy	33 ~66~ 98	$49 \sim 92 \sim 131$	$\begin{aligned} & .0008 \\ & .0010 \\ & .0012 \end{aligned}$	$\begin{array}{r} .0394 \\ .0512 \\ .0630 \end{array}$	$\begin{aligned} & .0012 \\ & .0016 \\ & .0020 \\ & \hline \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \\ & .0709 \\ & \hline \end{aligned}$	$\begin{aligned} & .0012 \\ & .0018 \\ & .0024 \\ & \hline \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \\ & .0787 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{aligned} & .0512 \\ & .0709 \\ & .0866 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \end{aligned}$
	Titanium	98~131~164	131~197~262	$\begin{aligned} & .0008 \\ & .0010 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0512 \end{aligned}$	$\begin{aligned} & .0012 \\ & .0016 \end{aligned}$	$\begin{aligned} & .0394 \\ & .0551 \end{aligned}$	$\begin{aligned} & .0012 \\ & .0018 \end{aligned}$	$\begin{aligned} & .0472 \\ & .0630 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0512 \\ & .0709 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \end{aligned}$ $.0945$

Cutting Data $>$ semememomen

-99321-016-2030 / 99323-016-2030 >>

Workpiece material		SFM		Ø.787"		Ø .866"		$\varnothing .984 "$		61.063"		Ø1.181"	
		99321		$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\underset{\text { IPR }}{\mathbf{f}}$	Pitch Inch	$\underset{\text { IPR }}{\mathbf{f}}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \text { f } \\ \text { IPR } \end{gathered}$	Pitch Inch
P	Carbon steel $0.25 \% \mathrm{C}$	197~295~426	328~525~722	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$		$\begin{array}{r} .0035 \\ .0047 \\ .0059 \end{array}$	$\begin{aligned} & .0748 \\ & .1008 \\ & .1280 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{gathered} .0827 \\ .1102 \\ .1378 \end{gathered}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1165 \\ & .1476 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0083 \\ & .0102 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
	Carbon steel $0.45 \% \text { C }$	197~295~394	328~492~656	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0059 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1008 \\ & .1280 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0827 \\ & .1102 \\ & .1378 \end{aligned}$	$\begin{array}{r} .0055 \\ .0075 \\ .0094 \end{array}$	$\begin{aligned} & .0866 \\ & .1165 \\ & .1476 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0083 \\ & .0102 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
	Carbon steel $0.60 \% \mathrm{C}$	164~230~361	262~426~590	$\begin{aligned} & .0020 \\ & .0028 \\ & \hline .0035 \\ & \hline \end{aligned}$	$\begin{aligned} & .0630 \\ & .0846 \\ & .1063 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0051 \\ & \hline \end{aligned}$	$\begin{aligned} & .0669 \\ & .0906 \\ & .1142 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \\ & \hline \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \\ & \hline \end{aligned}$	$\begin{aligned} & .0787 \\ & .1063 \\ & .1339 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0091 \\ & \hline \end{aligned}$	$\begin{aligned} & .0827 \\ & .1122 \\ & .1417 \end{aligned}$
	Low alloy steel	131~230~328	262~394~525	$\begin{aligned} & .0020 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0591 \\ & .0807 \\ & .1024 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0866 \\ & .1102 \end{aligned}$	$\begin{aligned} & .0043 \\ & .0059 \\ & .0075 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$
	High alloy steel	131~197~262	197~295~394	$\begin{aligned} & .0020 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0591 \\ & .0807 \\ & .1024 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0866 \\ & .1102 \end{aligned}$	$\begin{gathered} .0043 \\ .0059 \\ .0075 \end{gathered}$	$\begin{aligned} & .0709 \\ & .0945 \\ & \hline .1181 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$
M	Stainless steel	131~197~262	197~295~394	$\begin{aligned} & .0020 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0591 \\ & .0807 \\ & .1024 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0866 \\ & .1102 \end{aligned}$	$\begin{gathered} .0043 \\ .0059 \\ .0075 \end{gathered}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$
K	Cast Iron	131~230~328	262~394~525	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0059 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1016 \\ & .1280 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0827 \\ & .1102 \\ & .1378 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1173 \\ & .1476 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0083 \\ & .0102 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
N	AI	262~426~590	394~689~984	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0059 \end{aligned}$	$\begin{aligned} & .1102 \\ & .1512 \\ & .1917 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1220 \\ & .1594 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1299 \\ & .1752 \\ & .2205 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0083 \\ & .0102 \end{aligned}$	$\begin{array}{r} .1417 \\ .1890 \\ .2362 \end{array}$
	Cu	197~344~492	328~558~787	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0827 \\ & .1122 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0047 \\ & .0059 \\ & \hline \end{aligned}$	$\begin{aligned} & .0906 \\ & .1220 \\ & .1535 \\ & \hline \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \\ & \hline \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0083 \\ & \hline .0102 \\ & \hline \end{aligned}$	$\begin{aligned} & .1102 \\ & .1496 \\ & .1890 \end{aligned}$
S	Ni- Alloy	33 ~66~ 98	$49 \sim 92 \sim 131$	$\begin{aligned} & .0008 \\ & .0012 \\ & .0016 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \\ & \hline \end{aligned}$	$\begin{aligned} & .0012 \\ & .0020 \\ & .0024 \\ & \hline \end{aligned}$	$\begin{aligned} & .0591 \\ & .0807 \\ & .1024 \\ & \hline \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{array}{r} .0630 \\ .0866 \\ .1102 \\ \hline \end{array}$	$\begin{array}{r} .0016 \\ .0028 \\ .0035 \\ \hline \end{array}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \\ & \hline \end{aligned}$	$\begin{aligned} & .0020 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$
	Titanium	98~131~164	131~197~262	$\begin{aligned} & 0.0008 \\ & 0.0012 \\ & 0.0016 \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0012 \\ & .0020 \\ & .0024 \end{aligned}$	$\begin{aligned} & .0591 \\ & .0807 \\ & .1024 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0630 \\ & .0866 \\ & .1102 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0020 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$

-99321-020-2540 / 99323-020-2540 >>

Workpiece material		SFM		Ø.984"		Ø1.102"		01.260"		Ø1.417"		Ø1.575"	
		99321		$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} f \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \text { f } \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \text { f } \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \text { f } \\ \text { IPR } \end{gathered}$	Pitch Inch
P	Carbon steel $0.25 \% \text { C }$	197~295~426	328~525~722	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{aligned} & .0827 \\ & .1102 \\ & .1378 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0091 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$
	Carbon steel $0.45 \% \text { C }$	197~295~394	328~492~656	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \\ & \hline \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \\ & \hline \end{aligned}$	$\begin{aligned} & .0827 \\ & .1102 \\ & .1378 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0091 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \\ & \hline \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \\ & \hline \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \\ & \hline \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \\ & \hline \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$
	Carbon steel $0.60 \% C$	164~230~361	262~426~590	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{gathered} .0630 \\ .0846 \\ .1063 \end{gathered}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$
	Low alloy steel	131~230~328	262~394~525	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0669 \\ & .0886 \\ & .1102 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
	High alloy steel	131~197~262	197~295~394	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0669 \\ & .0886 \\ & .1102 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
M	Stainless steel	131~197~262	197~295~394	$\begin{aligned} & .0020 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{aligned} & .0551 \\ & .0748 \\ & .0945 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .0669 \\ & .0886 \\ & .1102 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
K	Cast Iron	131~230~328	262~394~525	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0709 \\ & .0945 \\ & .1181 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{aligned} & .0827 \\ & .1102 \\ & .1378 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0091 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \\ & \hline \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \\ & \hline \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$
N	AI	262~426~590	394~689~984	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{aligned} & .1220 \\ & .1634 \\ & .2047 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0091 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1575 \\ & .2106 \\ & .2638 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{array}{r} .1772 \\ .2362 \\ .2953 \end{array}$
	Cu	197~344~492	328~558~787	$\begin{aligned} & .0028 \\ & .0039 \\ & .0047 \end{aligned}$	$\begin{gathered} .0827 \\ .1122 \\ .1417 \end{gathered}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0067 \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0091 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1260 \\ & .1693 \\ & .2126 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{array}{r} .1417 \\ .1890 \\ .2362 \end{array}$
S	Ni- Alloy	33 ~66~ 98	$49 \sim 92 \sim 131$	$\begin{aligned} & .0008 \\ & .0016 \\ & .0020 \\ & \hline \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0012 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{gathered} .0669 \\ .0886 \\ .1102 \end{gathered}$	$\begin{aligned} & .0016 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0020 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{array}{r} .0866 \\ .1142 \\ .1417 \end{array}$	$\begin{aligned} & .0024 \\ & .0035 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$
	Titanium	98~131~164	131~197~262	$\begin{aligned} & .0008 \\ & .0016 \\ & .0020 \end{aligned}$	$\begin{gathered} .0551 \\ .0748 \\ .0945 \end{gathered}$	$\begin{aligned} & .0012 \\ & .0020 \\ & .0028 \end{aligned}$	$\begin{aligned} & .0669 \\ & .0886 \\ & .1102 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0028 \\ & .0035 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0020 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0035 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$

Nine9
-99321-025-3050 / 99323-025-3050 >>

Workpiece material		SFM		Ø1.181"		61.378"		61.575"		Ø1.772"		Ø1.969"	
		99321		$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} f \\ \text { IPR } \end{gathered}$	Pitch Inch
P	Carbon steel $0.25 \% \mathrm{C}$	197~295~426	328~525~722	$\begin{aligned} & .0031 \\ & .0043 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{gathered} .0067 \\ .0091 \\ .0110 \end{gathered}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{gathered} .0075 \\ .0102 \\ .0126 \end{gathered}$	$\begin{aligned} & .1299 \\ & .1732 \\ & .2165 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$
	Carbon steel $0.45 \% \text { C }$	197~295~394	328~492~656	$\begin{aligned} & .0031 \\ & .0043 \\ & .0051 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \\ & \hline \end{aligned}$	$\begin{aligned} & .1299 \\ & .1732 \\ & .2165 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$
	Carbon steel $0.60 \% C$	164~230~361	262~426~590	$\begin{aligned} & .0028 \\ & .0039 \\ & \hline .0047 \\ & \hline \end{aligned}$	$\begin{gathered} .0866 \\ .1142 \\ .1417 \\ \hline \end{gathered}$	$\begin{aligned} & .0039 \\ & .0055 \\ & .0071 \\ & \hline \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \\ & \hline \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \\ & \hline \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \\ & \hline \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \\ & \hline \end{aligned}$	$\begin{aligned} & .1260 \\ & .1693 \\ & .2126 \\ & \hline \end{aligned}$
	Low alloy steel	131~230~328	262~394~525	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \\ & \hline \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
	High alloy steel	131~197~262	197~295~394	$\begin{aligned} & .0024 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & \hline .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
M	Stainless steel	131~197~262	197~295~394	$\begin{aligned} & .0024 \\ & .0031 \\ & \hline .0039 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & \hline .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
K	Cast Iron	131~230~328	262~394~525	$\begin{aligned} & .0031 \\ & .0043 \\ & \hline .0051 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & \hline .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{aligned} & .1299 \\ & .1732 \\ & .2165 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$
N	AI	262~426~590	394~689~984	$\begin{aligned} & .0031 \\ & .0043 \\ & .0051 \end{aligned}$	$\begin{gathered} .1417 \\ .1890 \\ .2362 \end{gathered}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1575 \\ & .2106 \\ & .2638 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1772 \\ & .2362 \\ & .2953 \end{aligned}$	$\begin{gathered} .0075 \\ .0102 \\ .0126 \end{gathered}$	$\begin{aligned} & .1929 \\ & .2579 \\ & .3228 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{array}{r} .2126 \\ .2835 \\ .3543 \end{array}$
	Cu	197~344~492	328~558~787	$\begin{aligned} & .0031 \\ & .0043 \\ & .0051 \end{aligned}$	$\begin{gathered} .1142 \\ .1516 \\ .1890 \end{gathered}$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1260 \\ & .1693 \\ & .2126 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0110 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{aligned} & .1575 \\ & .2087 \\ & .2598 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{gathered} .1693 \\ .2264 \\ .2835 \end{gathered}$
S	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	$\begin{aligned} & .0008 \\ & .0016 \\ & .0020 \\ & \hline \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \\ & \hline \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{gathered} .0866 \\ .1142 \\ .1417 \\ \hline \end{gathered}$	$\begin{gathered} .0024 \\ .0035 \\ .0047 \\ \hline \end{gathered}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{gathered} .0024 \\ .0035 \\ .0047 \\ \hline \end{gathered}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \\ & \hline \end{aligned}$	$\begin{aligned} & .0028 \\ & .0043 \\ & .0055 \\ & \hline \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \\ & \hline \end{aligned}$
	Titanium	98~131~164	131~197~262	$\begin{aligned} & .0008 \\ & .0016 \\ & .0020 \end{aligned}$	$\begin{aligned} & .0748 \\ & .1004 \\ & .1260 \end{aligned}$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0866 \\ & .1142 \\ & .1417 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0035 \\ & .0047 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0035 \\ & .0047 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$

-99321-025-4265 >>

Workpiece material		SFM	Ø1.654"		Ø1.969"		Ø2.165"		62.362"		Ø2.559"	
			$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	Pitch Inch	$\begin{gathered} f \\ \text { IPR } \end{gathered}$	Pitch Inch
P	Carbon steel $0.25 \% C$	$328 \sim 525 \sim 722$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1220 \\ & .1634 \\ & .2047 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1299 \\ & .1732 \\ & .2165 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{aligned} & .1339 \\ & .1791 \\ & .2244 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$
	Carbon steel $0.45 \% \text { C }$	$328 \sim 492 \sim 656$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1220 \\ & .1634 \\ & .2047 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1299 \\ & .1732 \\ & .2165 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{aligned} & .1339 \\ & .1791 \\ & .2244 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$
	Carbon steel $0.60 \% C$	$262 \sim 426 \sim 590$	$\begin{aligned} & .0043 \\ & .0059 \\ & .0071 \end{aligned}$	$\begin{aligned} & .1063 \\ & .1417 \\ & .1772 \end{aligned}$	$\begin{aligned} & .0051 \\ & .0071 \\ & .0087 \end{aligned}$	$\begin{aligned} & .1102 \\ & .1476 \\ & .1850 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0067 \\ & .0091 \\ & .0114 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1594 \\ & .2008 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1260 \\ & .1693 \\ & .2126 \end{aligned}$
	Low alloy steel	$262 \sim 394 \sim 525$	$\begin{aligned} & .0039 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0043 \\ & .0059 \\ & .0075 \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \end{aligned}$	$\begin{aligned} & .1102 \\ & .1457 \\ & .1811 \end{aligned}$	$\begin{array}{r} .0063 \\ .0087 \\ .0106 \\ \hline \end{array}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
	High alloy steel	$197 \sim 295 \sim 394$	$\begin{aligned} & .0039 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0043 \\ & .0059 \\ & .0075 \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \end{aligned}$	$\begin{aligned} & .1102 \\ & .1457 \\ & .1811 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
M	Stainless steel	$197 \sim 295 \sim 394$	$\begin{aligned} & .0039 \\ & .0051 \\ & .0063 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0043 \\ & .0059 \\ & .0075 \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \end{aligned}$	$\begin{aligned} & .0055 \\ & .0075 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0098 \\ & \hline \end{aligned}$	$\begin{aligned} & .1102 \\ & .1457 \\ & .1811 \end{aligned}$	$\begin{aligned} & .0063 \\ & .0087 \\ & .0106 \\ & \hline \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
K	Cast Iron	$262 \sim 394 \sim 525$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1181 \\ & .1575 \\ & .1969 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1220 \\ & .1634 \\ & .2047 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1299 \\ & .1732 \\ & .2165 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{aligned} & .1339 \\ & .1791 \\ & .2244 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .1417 \\ & .1890 \\ & .2362 \end{aligned}$
N	AI	$394 \sim 689 \sim 984$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{aligned} & .1772 \\ & .2362 \\ & .2953 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1850 \\ & .2461 \\ & .3071 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1929 \\ & .2579 \\ & .3228 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{gathered} .2047 \\ .2717 \\ .3386 \end{gathered}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{aligned} & .2126 \\ & .2835 \\ & .3543 \end{aligned}$
	Cu	$328 \sim 558 \sim 787$	$\begin{aligned} & .0047 \\ & .0063 \\ & .0079 \end{aligned}$	$\begin{gathered} .1417 \\ .1890 \\ .2362 \end{gathered}$	$\begin{aligned} & .0059 \\ & .0079 \\ & .0094 \end{aligned}$	$\begin{aligned} & .1496 \\ & .1988 \\ & .2480 \end{aligned}$	$\begin{aligned} & .0071 \\ & .0094 \\ & .0118 \end{aligned}$	$\begin{aligned} & .1575 \\ & .2087 \\ & .2598 \end{aligned}$	$\begin{aligned} & .0075 \\ & .0102 \\ & .0126 \end{aligned}$	$\begin{aligned} & .1614 \\ & .2165 \\ & .2717 \end{aligned}$	$\begin{aligned} & .0079 \\ & .0106 \\ & .0134 \end{aligned}$	$\begin{array}{r} .1693 \\ .2264 \\ .2835 \end{array}$
S	Ni- Alloy	$49 \sim 92 \sim 131$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0020 \\ & .0031 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0035 \\ & .0047 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \end{aligned}$	$\begin{aligned} & .0024 \\ & .0039 \\ & .0051 \end{aligned}$	$\begin{aligned} & .1102 \\ & .1457 \\ & .1811 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0043 \\ & .0055 \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$
	Titanium	$131 \sim 197 \sim 262$	$\begin{aligned} & .0016 \\ & .0024 \\ & .0031 \\ & \hline \end{aligned}$	$\begin{aligned} & .0945 \\ & .1260 \\ & .1575 \end{aligned}$	$\begin{aligned} & .0020 \\ & .0031 \\ & .0039 \\ & \hline \end{aligned}$	$\begin{aligned} & .0984 \\ & .1319 \\ & .1654 \\ & \hline \end{aligned}$	$\begin{aligned} & .0024 \\ & .0035 \\ & .0047 \end{aligned}$	$\begin{aligned} & .1024 \\ & .1378 \\ & .1732 \\ & \hline \end{aligned}$	$\begin{aligned} & .0024 \\ & .0039 \\ & .0051 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .1102 \\ & .1457 \\ & .1811 \\ & \hline \end{aligned}$	$\begin{aligned} & .0028 \\ & .0043 \\ & .0055 \\ & \hline \end{aligned}$	$\begin{aligned} & .1142 \\ & .1516 \\ & .1890 \end{aligned}$

Application Example

-Special insert geometry for cutting different materials>>

- Serrated cutting edge makes the chips short and small, and easier to evacuate.
- Recommended for almost all material types, good for drilling material that generates long, soft chips.

- To cut Titanium in different conditions >>

Example 2										
	Material		Ti6AI4V, Titanium							
	Tool		99323-016-2030 M08-HD17-2030							
	Insert		N9MX070204-NC2032							
	Machine		HAAS VM-3, BT40, 22.5 KW							
	Coolant		Internal							
	Fig.	Dc Inch	$\underset{\text { Inch }}{\text { D }}$	$\underset{\text { Inch }}{\text { L }}$	$\begin{aligned} & \text { Vc } \\ & \text { SFM } \end{aligned}$	$\underset{\text { r.p.m }}{\mathrm{S}}$	$\underset{\text { IPR }}{\mathbf{f}}$	$\begin{gathered} \text { F } \\ \text { IPM } \end{gathered}$	P Inch	$\begin{gathered} \mathbf{T} \\ \text { sec. } \end{gathered}$
	1	$\varnothing .669$	Ø1.201	. 787	196.8	1200	. 0020	2.4	. 079	423
+	2		$\varnothing .807$. 787	196.8	1200	. 0012	1.44	. 039	366
	3		$\varnothing .787$	1.969	196.8	1200	. 0012	1.44	. 039	785
	5		$\varnothing .787$. 787	196.8	1200	. 0020	2.4	. 079	94
$16 A A_{4} V$										
	Coun for	r sink 0 bolt		M20 hole	Cros	hole	Sur	ng		

- To produce step hole Ø2.106" \& Ø1.772" with one tool >>

-

Each holder "NC Helix Drill" can machine different diameters and hole depths.
Producing a Ø2.362" x 1.063" hole with just one tool.
Eliminates $2^{\text {nd }}$ operation from the process. Machine load 8\%. >>

- Requires low spindle power!

BT30 machine, Ø1.181" hole diameter, 3.3xDc drill depth >>

Example 5										
Maximum drilling capacity of the 5.5 kw spindle is $\varnothing 0.63$ "										
	Material			S50C (JIS), High carbon steel						
	Tool			99321-020-2540 / BC20-HD22-2540						
	Insert			N9MX100306-NC2032						
	Machine			вт30, 5.5 Kw						
	Coolant			External coolant						
	Dc Inch	$\underset{\text { Inch }}{\text { D }}$	$\underset{\text { Inch }}{\mathrm{L}}$	$\begin{aligned} & \text { Vc } \\ & \text { SFM } \end{aligned}$	$\underset{\text { r.p. } \mathrm{s}}{\mathrm{~S}}$	$\underset{\text { IPR }}{f}$	$\underset{\mathbb{1 P M}}{\mathrm{F}}$	$\underset{\text { Inch }}{1}$	$\underset{\text { Inch }}{\mathbf{P}}$	$\begin{gathered} \mathrm{T} \\ \text { sec. } \end{gathered}$
	$\varnothing .866$	ø1.181	2.756	656	* 2893	. 0079	22.85	. 157	. 110	62
	* 3000 r.p.m. is used.									

- Drill bigger holes using lower power spindles. Increase flexibility and occupy fewer tool positions in CNC machines.

- Replace your end mill with an NC helix drill.

Make the impossible become possible >>

Example 6									
Tool Path : 2.047"	Rough Slotting								
	Slot Dimension			V: $0.669 " \times 0.709 " \times 2.756 "$					
	Material			S45C (JIS), Medium Carbon Steel					
	Tool			99323-016-2030 M08-HD17-2030					
	Insert			N9MX070204-NC2032					
	Machine			BT40					
	Coolant			Internal coolant, emulsion					
$\begin{aligned} & \text { or } \\ & \text { ì } \\ & \text { on } \end{aligned}$	Dc Inch	$\underset{\text { Inch }}{\text { L }}$	$\begin{aligned} & \text { Vc } \\ & \text { SFM } \end{aligned}$	$\underset{\text { r.p.m }}{\mathrm{S}}$	$\begin{gathered} \mathbf{f} \\ \text { IPR } \end{gathered}$	$\begin{gathered} \text { F } \\ \text { IPM } \end{gathered}$	$\underset{\text { Inch }}{\mathbf{P}}$	$\begin{gathered} \mathrm{T} \\ \mathrm{sec} . \end{gathered}$	$\begin{gathered} Q \\ \ln .^{3} / \mathrm{min} . \end{gathered}$
	$\varnothing .669$	2.756	656	3800	. 0039	14.82	.157*	91	2.075
	* Ramping depth per cut $=0.079$ "								
Notch of Tool Path : 5.039"	Rough Slotting								
	Slot Dimension			V: $1.575 " \times 0.984 " \times 2.756 "$					
	Material			95400, Aluminium Bronze					
	Tool			9323-020-2540 M10-HD22-2540					
	Insert			N9MX100306-NC2032					
	Machine			HAAS BT40					
	Coolant			External / Internal coolant					
	Dc Inch	L Inch	Vc SFM	$\begin{gathered} \mathrm{S} \\ \text { r.p.m } \end{gathered}$	f IPR	F IPM	P Inch	T sec.	
	$\varnothing .866$. 984	1148	5000	. 0079	39.50	. 197	23	12.937

- One tool performs multiple patterns. >>

Not only a drill, but an end mill too. Maximum ramping angle is 20°.
Small radius path to cut holes, countersink holes, and create various cavity shapes in different materials.
Less inventory of different sizes of drills and indexable end mills, NC Helix Drill cuts it all !

No Need To Choose Nine9 Does It All

K P M
 N S

(

5296 N. Northwest Highway
Chicago, Illinois 60630
800-621-5486
www.everede.net
Distributor

