

Principle

NC Helix Drill Milling, Drilling & Slotting

Cuts material by helical interpolation; serrated cutting edge minimizes chip length. Low spindle power is required, good for drilling material that generates long, soft chips.

Either linear or circular ramping.

Reduce Your Tool Inventory

Only six tools for making Ø.512"~Ø2.65" (Ø13~Ø65mm) hole from solid.

20

Each holder can machine different diameters and hole depths, saving your tool inventory and cost! No need to peck drill or dwell in operation, even without internal coolant.

Lower Spindle Power Consumption Easy to cut!

Principle

ea

Universal

Benef

Circular milling Ramping Angle

- Thanks to the small cutting load of the serrated cutting edge and helical interpolation, low power consumption of the spindle is required.
- Circular ramping milling, maximum ramping angle is 20°.
 For example: tool HD27 machining Ø1.969" (50 mm) hole, .354" (9 mm) pitch for aluminum, .236" (6 mm) pitch for carbon steel.

01

Feature
<Page 11>

Only six tools for drilling Ø.512"~Ø2.65" (Ø13~65mm)

- Cuts by helical interpolation.
- Sech holder can machine different diameters and hole depths.

Special insert geometry for cutting different materials

- Serrated cutting edge makes the chips short and small, and easier to evacuate.
- Eliminate swarf and vibration problems while drilling difficult or deep holes.

One tool performs multiple applications

05

Not only a drill, but an end mill too.

Strength

ures

Extraordinary

Opportunities

Small radius path to cut a hole or step hole, various curved cavity shapes on different materials.

Functions in variable conditions Feature <Page 10>

Plunge Concave Drilling Surfaces

Angled

Stack

Drilling

Cross

Holes

Half hole on radius

Roughness Measuring

Workpiece

Workpiece

Offset Drilling

Make " One more turn" after reached the depth. Ex: G03 I-1.5 Z-30 P5 G03 I-1.5 <make one more turn > G01 X0 Y0 < afterward, let tool back to center of hole >

Workpiece

Offset

Drilling

Flatness

Specification

Insert

NC2032 : For general purpose. Suitable for almost any material.

Top recommendation is 2xDc machining, high performance cutting.

NC5074 : For smooth cutting. It resolves the chatter from weak clamping

devices or low power machines.

Top recommendation is 3xDc or above. Also prevents chipping.

NC5074

Ordoring	odo	Crede	Conting		D	imensior	າຣ	Screw	Kov	* Max.
Ordering o	oue	Grade	Coating		L	S	Re	Screw	/ ^{SA} Key	Pitch
N9MX04T002	NC2032	K20F	TiAIN	-	.187"	.071"	.008"	NS-18037 5.31 inlb.	NK-T6	.118"
N9IVIX041002	NC5074	P40	AICrN	_	(4.75)	(1.8)	(0.2)	5.51 IIIID. (0.6 Nm)	INK-10	(3.0)
N9MX05T103	NC2032	K20F	TiAIN	-	.226"	.079"	.012"	NS-20045 5.31 inlb.	in_lbNK_T6	.177"
191012051105	NC5074	P40	AICrN	Re	(5.75)	(2.0)	(0.3)	0.6 Nm)	INK-10	(4.5)
N9MX070204	NC2032	K20F	TiAIN		.295"	.094"	.016"	NS-25045 7.97 inlb.	NK-T7	.236"
N9WX070204	NC5074	P40	AlCrN		(7.5)	(2.4)	(0.4)	(0.9 Nm)	ININ-17	(6.0)
NOMY100206	NC2032	K20F	TiAIN	S	.394"	.125"	.024"	NS-30072 17.7 inlb.	NK-T9	.295"
N9MX12T308	NC5074	P40	AICrN	_	(10.0)	(3.18)	(0.6)	(2.0 Nm)	INK-19	(7.5)
	NC2032	K20F	TiAIN	-	.492"	.156"	.031"	NS-35080		.354"
	NC5074	P40	AlCrN	-	(12.5)	(3.97)	(0.8)	22.13 inlb. (2.5 Nm)	NK-T15	(9.0)

* Maximum pitch refers to maximum ramping angle. Please see page 6.

Holder **Cylindrical Shank**

► Helical chip-removing groove >>

- · Designed for CNC machines with external coolant
- Unique helical groove design generates chip-removing coolant stream.
- The helical groove is designed for the coolant to remove swarf from the cutting zone.
- · For horizontal machining, it is necessary to increase coolant volume.

3.858" (98) 1.575" (40)	Ø.394" (10	Ø1.26" (32)
L1 L2.205" (56)		- PQ
		2

									10,280		
Fig	J. Ordering Code	Туре	Capable of Dmin.	drill dia. mm Dmax.	Ød	ØDc	L	L1	Max. Depth	Insert type	* Max. ramping angle
	99321-010-1320	BC10-HD11-1320	.512" (13)	.787" (20)	.394" (10)	.433" (11)	3.150" (80)	1.575" (40)	1.181" (30)	N9MX04T002	20°
	99321-012-1525	BC12-HD13-1525	.591" (15)	.984" (25)	.472" (12)	.512" (13)	3.937" (100)	1.969" (50)	1.417" (36)	N9MX05T103	20°
1	99321-016-2030	BC16-HD17-2030	.787" (20)	1.181" (30)	.630" (16)	.669" (17)	4.331" (110)	2.362" (60)	1.969" (50)	N9MX070204	20°
	99321-020-2540	BC20-HD22-2540	.984" (25)	1.575" (40)	.787" (20)	.866" (22)	4.921" (125)	2.756" (70)	2.362" (60)	N9MX100306	20°
	99321-025-3050	25-3050 BC25-HD27-3050		1.969" (50)	.984" (25)	1.063" (27)	6.496" (165)	3.346" (85)	2.953" (75)		20°
2	* 99321-025-4265	SL25-HD33-4265	1.654" (42)	2.559" (65)	.984" (25)	1.299" (33)	5.118" (130)	2.913" (74)	1.969" (50)	N9MX12T308	9°

* 99321-025-4265 is Ø0.984" Side Lock Shank with internal coolant. * Maximum ramping angle refers to maximum pitch. Please see page 6.

3

Screw Fit Cutter

Internal Coolant

· Designed for CNC machines with internal coolant.

Туре

· Standard screw-fit body adapts to almost any kind of the screw-fit tool holder or extension bar in the market.

Dmin.

Capable of drill dia. mm

Dmax.

• Use for enlarge hole.

Ordering Code

Insert type

20°	é
20°	
20°	i
20°	
20°	

Max. ramping

8

angle

.217" (5.5) .512' .433" .394" .787" .315" .787" N9MX04T002 99323-010-1320 M05-HD11-1320 M5 (13) (20) (11) (10) (20) (8) .591" .984" .512" .472" .984' .256" 394' 99323-012-1525 M06-HD13-1525 M6 N9MX05T103 (15) (25) (13) (12) (25) (6.5) (10) .787" (20) 1.181" (30) .630" (16) .984' (25) .551' (14) .669' .335" (8.5) 99323-016-2030 M08-HD17-2030 M8 N9MX070204 (17)1.181" .984" 1.575" .866' .787" .413" .709' 99323-020-2540 M10-HD22-2540 M10 N9MX100306 (25) (40) (22) (20) (30) (10.5)(18) 1.181" 1.378" 1.969" 1.063" .984" 492" .906' 99323-025-3050 M12-HD27-3050 M12 N9MX12T308 (30) (50) (25) (35) (12.5) (23) (27)

ØD1

Μ

DPM

sw

* Maximum ramping angle refers to maximum pitch. Please see page 6.

Extension Bar

Steel Type

- T is the maximum overhang length.
- With internal coolant hole.

Ordering Code	Туре	ØD	т	L	М
99801-10S	BC10-075M05S	.394" (10)	.984" (25)	2.953" (75)	M5
99801-12S	BC12-075M06S	.472" (12)	.984" (25)	2.953" (75)	M6
99801-16S	BC16-090M08S	.630" (16)	1.378" (35)	3.543" (90)	M8
99801-20S	BC20-100M10S	.787" (20)	1.575" (40)	3.937" (100)	M10
99801-25S	BC25-120M12S	.984" (25)	1.969" (50)	4.724" (120)	M12

Μ

EVA M08-BC 16-150I

Solid Carbide Type

L

 Insert NC5074 is recommended for deep hole cutting.

• With internal coolant hole.

Ordering Code	Туре	ØD	L	М
398010-100M05	M05-BC10-100L	.394" (10)	3.937" (100)	M5
398012-100M06	M06-BC12-100L	.472" (12)	3.937" (100)	M6
398016-150M08	M08-BC16-150L	.630" (16)	5.906" (150)	M8
398020-200M10	M10-BC20-200L	.787" (20)	7.874" (200)	M10
398025-200M12	M12-BC25-200L	.984" (25)	7.874" (200)	M12

Nine9

4

Technical Guide

Nine9

※ Before you start, please pay attention the following conditions >>

• The NC Helix Drill is programmed using "Helical interpolation" on CNC machine, the CNC controller must have 3-axis simultaneously motion function.

NC Helix Drill	Cutting Parameters (S & F)	Formula					
	3 82 Y SEM	Dc = Dia. of Drill Inch					
	$S = \frac{3.82 \text{ X SFM}}{\text{Dc}} \text{ r.p.m.}$	D = Dia. of Hole Inch					
	F = S x IPR IPM	L = Depth of Drilling Inch					
	d = D – Dc Inch	Vc = Cutting Speed SFM					
I	$I = \frac{(D-Dc)}{2}$ Inch	S = Spindle Speed r.p.m.					
	$1 = \frac{2}{2}$	I = Circular radius Inch					
	Cutting time (T)	f = Feed rate IPR					
L L	$T = \frac{\pi x d x L x 60}{F x P}$ sec.	F = Table feed rate IPM					
i	$F = F \times P$	d = Circular diameter (D-Dc) Inch					
ØD	Chip removal Volume rate (Q)	P = Pitch of helical interpolation Inch					
	$Q = \frac{\pi \times D^2 \times L \times 60}{4 \times T} \text{Inch}^3 / \text{min.}$	T = Cutting time sec.					
	4 x T	Q = Chip removal volume rate Inch ³ / min					
	Example						
Material	S45C (JIS)						
Tool	99321-016-BC16-HD17, Dc= Ø0.669"	3.14 x 0.512 x 0.8 x 60					
Insert	N9MX070204-NC2032	$T = \frac{3.14 \times 0.512 \times 0.8 \times 60}{22.93 \times 0.1575} = 21 \text{ sec.}$					
D= Ø1.181", L= 0.8"							
S =	(3.82x 393.6) / 0.669" = 2248 r.p.m.	3.14 x 1.181 ² x 0.8 x 60					
F = S x f	2248 x 0.0102 = 22.93 IPM	$Q = \frac{3.14 \times 1.181^2 \times 0.8 \times 60}{4 \times 21} = 2.503 \text{ In.}^3 / \text{min}$					
P = 0.1575" (refer to cutting data	P for Carbon Steel 0.45%C)						
d = D – Dc	1.181"- 0.669" = 0.512"						

Technical Guide

% Before you start, please pay attention the following conditions >>

A Choosing a suitable drill body.

- Required hole diameter is within the recommended range (blue numbers).
- Required hole diameters (more than one size), choose the drill can cover more different hole diameters. Example 0.709", 0.787" and 0.866" hole diameter, choose 99323-012-1525.
- Hole tolerance : 0/-0.02 inch.

Drilling diameter	Coolant type	Max. drilling depth	Tool type	Dc	Insert type	Re	Max. pitch	Max. Ae
.512"~ . 590"~ .787"	Internal	3.150"	99323-010-1320	.433"	N9MX04T002	.008"	.118"	.417"
.512 ~ .550 ~ .767	External	1.181"	99321-010-1320	.433"	N9WA041002	.000	.110	.417
.590"~ .787"~ .984"	Internal	3.346"	99323-012-1525	.512"	N9MX05T103	.012"	.177"	.488"
.590 ~ .767 ~ .904	External	1.417"	99321-012-1525	.512"	1191017031103	.012	.177	.400
.787"~ .984"~ 1.181"	Internal	4.134"	99323-016-2030	.669"	N9MX070204	.016"	.236"	.638"
.707 * .904 * 1.101	External	1.969"	99321-016-2030	.669"	11910/0204	.010	.230	.030
.984"~ 1.181"~ 1.575"	Internal	5.118"	99323-020-2540	.866"	N9MX100306	.024"	.295"	.819"
.904 ~ 1.101 ~ 1.575	External	2.362"	99321-020-2540	.866"	N9WA 100300	.024	.295	.019
1.181"~ 1.575"~ 1.969"	Internal	6.299"	99323-025-3050	1.063"	N9MX12T308	.031"	.354"	1.000"
1.101 ~ 1.375 ~ 1.309	External	2.953"	99321-025-3050	1.063"	1131017121300	.031	.504	1.000
1.654"~ 1.969"~ 2.559"	Internal	1.969"	99321-025-4265	1.299"	N9MX12T308	.031"	.354"	1.236"

A Choosing a suitable insert grade for hole drilling.

- NC2032 for drill depth below 3xDc.
- NC5074 for drill depth 3xDc and above.

A Length of tool path for linear ramping.

Cutting Data >> Boldface number is recommended for start.

▶99321-010-1320 / 9932<u>3-010-1320 >></u>

		S	FM	Ø.8	512"	Ø .551"		Ø.0	30 "	Ø.7	'09''	Ø.7	787"
V	Vorkpiece material	99321	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0016 .0020 .0028	.0236 .0315 .0394	.0024 .0031 .0039	.0276 .0374 .0492	.0031 .0043 .0055	.0354 .0472 .0591	.0039 .0055 .0071	.0394 .0551 .0689	.0047 .0063 .0079	.0472 .0630 .0787
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0016 .0020 .0028	.0236 .0315 .0394	.0024 .0031 .0039	.0276 .0374 .0492	.0031 .0043 .0055	.0354 .0472 .0591	.0039 .0055 .0071	.0394 .0551 .0689	.0047 .0063 .0079	.0472 .0630 .0787
Р	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0016 .0020 .0024	.0236 .0295 .0354	.0024 .0028 .0035	.0276 .0354 .0441	.0028 .0039 .0047	.0315 .0433 .0531	.0035 .0047 .0063	.0354 .0472 .0618	.0039 .0055 .0071	.0394 .0551 .0709
	Low alloy steel	131 ~230~328	262 ~394~525	.0012 .0016 .0020	.0197 .0256 .0315	.0020 .0024 .0031	.0236 .0315 .0394	.0028 .0039 .0047	.0276 .0374 .0472	.0031 .0043 .0059	.0315 .0433 .0551	.0035 .0047 .0063	.0394 .0512 .0630
	High alloy steel	131 ~197~262	197 ~295~394	.0012 .0016 .0020	.0197 .0256 .0315	.0020 .0024 .0031	.0236 .0315 .0394	.0028 .0039 .0047	.0276 .0374 .0472	.0031 .0043 .0059	.0315 .0433 .0551	.0035 .0047 .0063	.0394 .0512 .0630
М	Stainless steel	131 ~197~262	197 ~295~394	.0012 .0016 .0020	.0197 .0256 .0315	.0020 .0024 .0031	.0236 .0315 .0394	.0028 .0039 .0047	.0276 .0374 .0472	.0031 .0043 .0059	.0315 .0433 .0551	.0035 .0047 .0063	.0394 .0512 .0630
к	Cast Iron	131 ~230~328	262 ~394~525	.0016 .0020 .0028	.0236 .0315 .0394	.0024 .0031 .0039	.0276 .0374 .0492	.0031 .0043 .0055	.0354 .0472 .0591	.0039 .0055 .0071	.0394 .0551 .0689	.0047 .0063 .0079	.0472 .0630 .0787
N	AI	262 ~426~590	394 ~689~984	.0016 .0020 .0028	.0354 .0472 .0591	.0024 .0031 .0039	.0433 .0591 .0736	.0031 .0043 .0055	.0512 .0709 .0886	.0039 .0055 .0071	.0591 .0827 .1031	.0047 .0063 .0079	.0709 .0945 .1181
N	Cu	197 ~344~492	328 ~558~787	.0016 .0020 .0028	.0276 .0374 .0472	.0024 .0031 .0039	.0354 .0472 .0591	.0031 .0043 .0055	.0394 .0551 .0709	.0039 .0055 .0071	.0472 .0669 .0827	.0047 .0063 .0079	.0551 .0748 .0945
s	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0004 .0008 .0012	.0197 .0256 .0315	.0004 .0008 .0016	.0236 .0315 .0394	.0008 .0012 .0020	.0276 .0374 .0472	.0012 .0020 .0028	.0315 .0433 .0551	.0016 .0024 .0031	.0354 .0512 .0630
J	Titanium	98 ~131~164	131 ~197~262	.0004 .0008 .0012	.0197 .0256 .0315	.0004 .0008 .0016	.0236 .0315 .0394	.0008 .0012 .0020	.0276 .0374 .0472	.0012 .0020 .0028	.0315 .0433 .0551	.0016 .0024 .0031	.0354 .0512 .0630

▶ 99321-012-1525 / 99323-012-1525 >>

		S	FM	Ø.5	590"	Ø .669"		Ø.	787"	Ø.8	66"	Ø .9	984"
	Norkpiece material	99321	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0020 .0028 .0035	.0472 .0630 .0787	.0028 .0039 .0051	.0512 .0701 .0886	.0035 .0051 .0063	.0591 .0787 .0984	.0047 .0063 .0079	.0630 .0858 .1083	.0051 .0071 .0087	.0709 .0945 .1181
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0020 .0028 .0035	.0472 .0630 .0787	.0028 .0039 .0051	.0512 .0701 .0886	.0035 .0051 .0063	.0591 .0787 .0984	.0047 .0063 .0079	.0630 .0858 .1083	.0051 .0071 .0087	.0709 .0945 .1181
Р	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0020 .0024 .0031	.0433 .0591 .0709	.0028 .0035 .0043	.0472 .0634 .0795	.0031 .0047 .0059	.0512 .0701 .0886	.0039 .0055 .0071	.0551 .0764 .0972	.0047 .0063 .0079	.0630 .0846 .1063
	Low alloy steel	131 ~230~328	262 ~394~525	.0016 .0020 .0028	.0394 .0512 .0630	.0024 .0031 .0039	.0394 .0551 .0709	.0028 .0039 .0051	.0472 .0630 .0787	.0035 .0051 .0063	.0512 .0709 .0866	.0039 .0055 .0067	.0551 .0748 .0945
	High alloy steel	131 ~197~262	197 ~295~394	.0016 .0020 .0028	.0394 .0512 .0630	.0024 .0031 .0039	.0394 .0551 .0709	.0028 .0039 .0051	.0472 .0630 .0787	.0035 .0051 .0063	.0512 .0709 .0866	.0039 .0055 .0067	.0551 .0748 .0945
M	Stainless steel	131 ~197~262	197 ~295~394	.0016 .0020 .0028	.0394 .0512 .0630	.0024 .0031 .0039	.0394 .0551 .0709	.0028 .0039 .0051	.0472 .0630 .0787	.0035 .0051 .0063	.0512 .0709 .0866	.0039 .0055 .0067	.0551 .0748 .0945
к	Cast Iron	131 ~230~328	262 ~394~525	.0020 .0028 .0035	.0472 .0630 .0787	.0028 .0039 .0051	.0512 .0701 .0886	.0035 .0051 .0063	.0512 .0748 .0984	.0047 .0063 .0079	.0630 .0858 .1083	.0051 .0071 .0087	.0709 .0945 .1181
	AI	262 ~426~590	394 ~689~984	.0020 .0028 .0035	.0709 .0945 .1181	.0028 .0039 .0051	.0787 .1059 .1327	.0035 .0051 .0063	.0866 .1173 .1476	.0047 .0063 .0079	.0945 .1283 .1622	.0051 .0071 .0087	.1063 .1417 .1772
N	Cu	197 ~344~492	328 ~558~787	.0020 .0028 .0035	.0551 .0748 .0945	.0028 .0039 .0051	.0630 .0846 .1063	.0035 .0051 .0063	.0709 .0945 .1181	.0047 .0063 .0079	.0787 .1043 .1299	.0051 .0071 .0087	.0827 .1122 .1417
s	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0010 .0012	.0394 .0512 .0630	.0012 .0016 .0020	.0394 .0551 .0709	.0012 .0018 .0024	.0472 .0630 .0787	.0016 .0024 .0031	.0512 .0709 .0866	.0016 .0024 .0031	.0551 .0748 .0945
	Titanium	98 ~131~164	131 ~197~262	.0008 .0010 .0012	.0394 .0512 .0630	.0012 .0016 .0020	.0394 .0551 .0709	.0012 .0018 .0024	.0472 .0630 .0787	.0016 .0024 .0031	.0512 .0709 .0866	.0016 .0024 .0031	.0551 .0748 .0945

Cutting Data >> Boldface number is recommended for start.

▶99321-016-2030 / 99323-016-2030 >>

,	Manlaria a a	S	FM	Ø .787"		Ø.8	866"	Ø.9	984"	Ø1.	063"	Ø1.′	181"
	Vorkpiece material	99321	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0024 .0031 .0039	.0709 .0945 .1181	.0035 .0047 .0059	.0748 .1008 .1280	.0047 .0063 .0079	.0827 .1102 .1378	.0055 .0075 .0094	.0866 .1165 .1476	.0059 .0083 .0102	.0945 .1260 .1575
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0024 .0031 .0039	.0709 .0945 .1181	.0035 .0047 .0059	.0748 .1008 .1280	.0047 .0063 .0079	.0827 .1102 .1378	.0055 .0075 .0094	.0866 .1165 .1476	.0059 .0083 .0102	.0945 .1260 .1575
Р	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0020 .0028 .0035	.0630 .0846 .1063	.0031 .0043 .0051	.0669 .0906 .1142	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0787 .1063 .1339	.0051 .0071 .0091	.0827 .1122 .1417
	Low alloy steel	131 ~230~328	262 ~394~525	.0020 .0024 .0031	.0551 .0748 .0945	.0028 .0039 .0047	.0591 .0807 .1024	.0035 .0051 .0063	.0630 .0866 .1102	.0043 .0059 .0075	.0709 .0945 .1181	.0047 .0063 .0079	.0748 .1004 .1260
	High alloy steel	131 ~197~262	197 ~295~394	.0020 .0024 .0031	.0551 .0748 .0945	.0028 .0039 .0047	.0591 .0807 .1024	.0035 .0051 .0063	.0630 .0866 .1102	.0043 .0059 .0075	.0709 .0945 .1181	.0047 .0063 .0079	.0748 .1004 .1260
м	Stainless steel	131 ~197~262	197 ~295~394	.0020 .0024 .0031	.0551 .0748 .0945	.0028 .0039 .0047	.0591 .0807 .1024	.0035 .0051 .0063	.0630 .0866 .1102	.0043 .0059 .0075	.0709 .0945 .1181	.0047 .0063 .0079	.0748 .1004 .1260
к	Cast Iron	131 ~230~328	262 ~394~525	.0024 .0031 .0039	.0709 .0945 .1181	.0035 .0047 .0059	.0748 .1016 .1280	.0047 .0063 .0079	.0827 .1102 .1378	.0055 .0075 .0094	.0866 .1173 .1476	.0059 .0083 .0102	.0945 .1260 .1575
	AI	262 ~426~590	394 ~689~984	.0024 .0031 .0039	.1063 .1417 .1772	.0035 .0047 .0059	.1102 .1512 .1917	.0047 .0063 .0079	.1220 .1594 .1969	.0055 .0075 .0094	.1299 .1752 .2205	.0059 .0083 .0102	.1417 .1890 .2362
N	Cu	197 ~344~492	328 ~558~787	.0024 .0031 .0039	.0827 .1122 .1417	.0035 .0047 .0059	.0906 .1220 .1535	.0047 .0063 .0079	.0984 .1319 .1654	.0055 .0075 .0094	.1063 .1417 .1772	.0059 .0083 .0102	.1102 .1496 .1890
s	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0012 .0016	.0551 .0748 .0945	.0012 .0020 .0024	.0591 .0807 .1024	.0016 .0024 .0031	.0630 .0866 .1102	.0016 .0028 .0035	.0709 .0945 .1181	.0020 .0031 .0039	.0748 .1004 .1260
S	Titanium	98 ~131~164	131 ~197~262	0.0008 0.0012 0.0016	.0551 .0748 .0945	.0012 .0020 .0024	.0591 .0807 .1024	.0016 .0024 .0031	.0630 .0866 .1102	.0016 .0028 .0035	.0709 .0945 .1181	.0020 .0031 .0039	.0748 .1004 .1260

▶99321-020-2540 / 99323-020-2540 >>

		S	FM	Ø .984" Ø1.102"		102"	Ø1.:	260"	Ø1.4	417"	Ø1.	575"	
V	Vorkpiece material	99321	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0028 .0039 .0047	.0709 .0945 .1181	.0039 .0055 .0067	.0827 .1102 .1378	.0055 .0075 .0091	.0945 .1260 .1575	.0067 .0091 .0110	.1063 .1417 .1772	.0071 .0094 .0118	.1181 .1575 .1969
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0028 .0039 .0047	.0709 .0945 .1181	.0039 .0055 .0067	.0827 .1102 .1378	.0055 .0075 .0091	.0945 .1260 .1575	.0067 .0091 .0110	.1063 .1417 .1772	.0071 .0094 .0118	.1181 .1575 .1969
Р	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0024 .0031 .0039	.0630 .0846 .1063	.0035 .0051 .0063	.0748 .1004 .1260	.0047 .0063 .0079	.0866 .1142 .1417	.0059 .0079 .0098	.0945 .1260 .1575	.0063 .0087 .0106	.1063 .1417 .1772
	Low alloy steel	131 ~230~328	262 ~394~525	.0020 .0028 .0035	.0551 .0748 .0945	.0031 .0043 .0055	.0669 .0886 .1102	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0866 .1142 .1417	.0055 .0075 .0094	.0945 .1260 .1575
	High alloy steel	131 ~197~262	197 ~295~394	.0020 .0028 .0035	.0551 .0748 .0945	.0031 .0043 .0055	.0669 .0886 .1102	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0866 .1142 .1417	.0055 .0075 .0094	.0945 .1260 .1575
М	Stainless steel	131 ~197~262	197 ~295~394	.0020 .0028 .0035	.0551 .0748 .0945	.0031 .0043 .0055	.0669 .0886 .1102	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0866 .1142 .1417	.0055 .0075 .0094	.0945 .1260 .1575
к	Cast Iron	131 ~230~328	262 ~394~525	.0028 .0039 .0047	.0709 .0945 .1181	.0039 .0055 .0067	.0827 .1102 .1378	.0055 .0075 .0091	.0945 .1260 .1575	.0067 .0091 .0110	.1063 .1417 .1772	.0071 .0094 .0118	.1181 .1575 .1969
	AI	262 ~426~590	394 ~689~984	.0028 .0039 .0047	.1063 .1417 .1772	.0039 .0055 .0067	.1220 .1634 .2047	.0055 .0075 .0091	.1417 .1890 .2362	.0067 .0091 .0110	.1575 .2106 .2638	.0071 .0094 .0118	.1772 .2362 .2953
N	Cu	197 ~344~492	328 ~558~787	.0028 .0039 .0047	.0827 .1122 .1417	.0039 .0055 .0067	.0984 .1319 .1654	.0055 .0075 .0091	.1142 .1516 .1890	.0067 .0091 .0110	.1260 .1693 .2126	.0071 .0094 .0118	.1417 .1890 .2362
	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0016 .0020	.0551 .0748 .0945	.0012 .0020 .0028	.0669 .0886 .1102	.0016 .0028 .0035	.0748 .1004 .1260	.0020 .0031 .0039	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575
S	Titanium	98 ~131~164	131 ~197~262	.0008 .0016 .0020	.0551 .0748 .0945	.0012 .0020 .0028	.0669 .0886 .1102	.0016 .0028 .0035	.0748 .1004 .1260	.0020 .0031 .0039	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575

Cutting Data >> Boldface number is recommended for start.

▶99321-025-3050 / 99323-025-3050 >>

		SFM		Ø1.181"		Ø1.	Ø1.378"		Ø1.575"		Ø1.772"		969"
\	Norkpiece material	99321	99323	f IPR	Pitch Inch								
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0031 .0043 .0051	.0945 .1260 .1575	.0047 .0063 .0079	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0075 .0102 .0126	.1299 .1732 .2165	.0079 .0106 .0134	.1417 .1890 .2362
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0031 .0043 .0051	.0945 .1260 .1575	.0047 .0063 .0079	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0075 .0102 .0126	.1299 .1732 .2165	.0079 .0106 .0134	.1417 .1890 .2362
Р	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0028 .0039 .0047	.0866 .1142 .1417	.0039 .0055 .0071	.0945 .1260 .1575	.0059 .0079 .0098	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0071 .0094 .0118	.1260 .1693 .2126
	Low alloy steel	131 ~230~328	262 ~394~525	.0024 .0031 .0039	.0748 .1004 .1260	.0035 .0051 .0063	.0866 .1142 .1417	.0051 .0071 .0087	.0945 .1260 .1575	.0059 .0079 .0098	.1024 .1378 .1732	.0063 .0087 .0106	.1142 .1516 .1890
	High alloy steel	131 ~197~262	197 ~295~394	.0024 .0031 .0039	.0748 .1004 .1260	.0035 .0051 .0063	.0866 .1142 .1417	.0051 .0071 .0087	.0945 .1260 .1575	.0059 .0079 .0098	.1024 .1378 .1732	.0063 .0087 .0106	.1142 .1516 .1890
M	Stainless steel	131 ~197~262	197 ~295~394	.0024 .0031 .0039	.0748 .1004 .1260	.0035 .0051 .0063	.0866 .1142 .1417	.0051 .0071 .0087	.0945 .1260 .1575	.0059 .0079 .0098	.1024 .1378 .1732	.0063 .0087 .0106	.1142 .1516 .1890
к	Cast Iron	131 ~230~328	262 ~394~525	.0031 .0043 .0051	.0945 .1260 .1575	.0047 .0063 .0079	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0075 .0102 .0126	.1299 .1732 .2165	.0079 .0106 .0134	.1417 .1890 .2362
N	AI	262 ~426~590	394 ~689~984	.0031 .0043 .0051	.1417 .1890 .2362	.0047 .0063 .0079	.1575 .2106 .2638	.0067 .0091 .0110	.1772 .2362 .2953	.0075 .0102 .0126	.1929 .2579 .3228	.0079 .0106 .0134	.2126 .2835 .3543
	Cu	197 ~344~492	328 ~558~787	.0031 .0043 .0051	.1142 .1516 .1890	.0047 .0063 .0079	.1260 .1693 .2126	.0067 .0091 .0110	.1417 .1890 .2362	.0075 .0102 .0126	.1575 .2087 .2598	.0079 .0106 .0134	.1693 .2264 .2835
s	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0016 .0020	.0748 .1004 .1260	.0016 .0024 .0031	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575	.0024 .0035 .0047	.1024 .1378 .1732	.0028 .0043 .0055	.1142 .1516 .1890
J	Titanium	98 ~131~164	131 ~197~262	.0008 .0016 .0020	.0748 .1004 .1260	.0016 .0024 .0031	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575	.0024 .0035 .0047	.1024 .1378 .1732	.0028 .0043 .0055	.1142 .1516 .1890

▶ 99321-025-4265 >>

	A	SFM	Ø1.	654"	Ø1.9	969"	Ø2.′	165"	Ø2.362"		Ø2.559"	
	Norkpiece material	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	328 ~ 525 ~ 722	.0047 .0063 .0079	.1181 .1575 .1969	.0059 .0079 .0094	.1220 .1634 .2047	.0071 .0094 .0118	.1299 .1732 .2165	.0075 .0102 .0126	.1339 .1791 .2244	.0079 .0106 .0134	.1417 .1890 .2362
	Carbon steel 0.45% C	328 ~ 492 ~ 656	.0047 .0063 .0079	.1181 .1575 .1969	.0059 .0079 .0094	.1220 .1634 .2047	.0071 .0094 .0118	.1299 .1732 .2165	.0075 .0102 .0126	.1339 .1791 .2244	.0079 .0106 .0134	.1417 .1890 .2362
Ρ	Carbon steel 0.60%C	262 ~ 426 ~ 590	.0043 .0059 .0071	.1063 .1417 .1772	.0051 .0071 .0087	.1102 .1476 .1850	.0063 .0087 .0106	.1181 .1575 .1969	.0067 .0091 .0114	.1181 .1594 .2008	.0071 .0094 .0118	.1260 .1693 .2126
	Low alloy steel	262 ~ 394 ~ 525	.0039 .0051 .0063	.0945 .1260 .1575	.0043 .0059 .0075	.0984 .1319 .1654	.0055 .0075 .0094	.1024 .1378 .1732	.0059 .0079 .0098	.1102 .1457 .1811	.0063 .0087 .0106	.1142 .1516 .1890
	High alloy steel	197 ~ 295 ~ 394	.0039 .0051 .0063	.0945 .1260 .1575	.0043 .0059 .0075	.0984 .1319 .1654	.0055 .0075 .0094	.1024 .1378 .1732	.0059 .0079 .0098	.1102 .1457 .1811	.0063 .0087 .0106	.1142 .1516 .1890
M	Stainless steel	197 ~ 295 ~ 394	.0039 .0051 .0063	.0945 .1260 .1575	.0043 .0059 .0075	.0984 .1319 .1654	.0055 .0075 .0094	.1024 .1378 .1732	.0059 .0079 .0098	.1102 .1457 .1811	.0063 .0087 .0106	.1142 .1516 .1890
к	Cast Iron	262 ~ 394 ~ 525	.0047 .0063 .0079	.1181 .1575 .1969	.0059 .0079 .0094	.1220 .1634 .2047	.0071 .0094 .0118	.1299 .1732 .2165	.0075 .0102 .0126	.1339 .1791 .2244	.0079 .0106 .0134	.1417 .1890 .2362
	AI	394 ~ 689 ~ 984	.0047 .0063 .0079	.1772 .2362 .2953	.0059 .0079 .0094	.1850 .2461 .3071	.0071 .0094 .0118	.1929 .2579 .3228	.0075 .0102 .0126	.2047 .2717 .3386	.0079 .0106 .0134	.2126 .2835 .3543
N	Cu	328 ~ 558 ~ 787	.0047 .0063 .0079	.1417 .1890 .2362	.0059 .0079 .0094	.1496 .1988 .2480	.0071 .0094 .0118	.1575 .2087 .2598	.0075 .0102 .0126	.1614 .2165 .2717	.0079 .0106 .0134	.1693 .2264 .2835
s	Ni- Alloy	49 ~ 92 ~ 131	.0016 .0024 .0031	.0945 .1260 .1575	.0020 .0031 .0039	.0984 .1319 .1654	.0024 .0035 .0047	.1024 .1378 .1732	.0024 .0039 .0051	.1102 .1457 .1811	.0028 .0043 .0055	.1142 .1516 .1890
	Titanium	131 ~ 197 ~ 262	.0016 .0024 .0031	.0945 .1260 .1575	.0020 .0031 .0039	.0984 .1319 .1654	.0024 .0035 .0047	.1024 .1378 .1732	.0024 .0039 .0051	.1102 .1457 .1811	.0028 .0043 .0055	.1142 .1516 .1890

Application Example

Special insert geometry for cutting different materials>>

- · Serrated cutting edge makes the chips short and small, and easier to evacuate.
- Recommended for almost all material types, good for drilling material that generates long, soft chips.

To cut Titanium in different conditions >>

			Exam	ple 2									
	Mate	rial		Ti6AI4V, Titanium									
	Tool			99323-016-2030 M08-HD17-2030									
	Inse	rt		N9MX07)204-NC2	032							
	Mac	nine		HAAS VM-3, BT40, 22.5KW									
	Cool	ant		Internal									
	Fig.	Dc Inch	D Inch	L Inch	Vc SFM	S r.p.m	f IPR	F	P Inch	T sec.			
	1	Ø .669	Ø1.201	.787	196.8	1200	.0020	2.4	.079	423			
	2		Ø .807	.787	196.8	1200	.0012	1.44	.039	366			
	3		Ø .787	1.969	196.8	1200	.0012	1.44	.039	785			
	5		Ø .787	.787	196.8	1200	.0020	2.4	.079	94			
Ti6Al ^{la} V				2						5			
		ter sink 20 bolt		M20 hole	Cross	s hole	Surfa	acing		hole adius			

▶ To produce step hole Ø2.106" & Ø1.772" with one tool >>

QŢ	
Z	

• Each holder "NC Helix Drill" can machine different diameters and hole depths.

Producing a Ø2.362" x 1.063" hole with just one tool. Eliminates 2nd operation from the process. Machine load 8%. >>

_		Exa	mple 4								
Mate	erial		Stainless Steel SUS304								
Tool	ΤοοΙ			99321-025-4265 (25mm Side Lock Shank)							
Inse	Insert			N9MX12T308-NC2032							
Мас	hine		BT40								
Coo	lant		External coolant								
Dc Inch	D Inch	L Inch	Vc SFM	S r.p.m	f IPR	F IPM	 Inch	P Inch	T sec.	Q In. ³ /min.	
Ø1.299	Ø2.362	1.063	328	1000	.0079	7.90	.531	.157	172	1.624	

Requires low spindle power! BT30 machine, Ø1.181" hole diameter, 3.3xDc drill depth >>

			Exam	ple 5									
Maximum drilling capacity of the 5.5 kw spindle is Ø0.63"													
	Material			S50C (JIS), High carbon steel									
	ΤοοΙ			99321-020-2540 / BC20-HD22-2540									
	Insert			N9MX100306-NC2032									
	Mach	nine		BT30, 5.5 Kw									
	Cool	ant		External	coolant								
	Dc	D	L	Vc	S	f	F	I.	Р	Т			
	Inch	Inch	Inch	SFM	r.p.m	IPR	IPM	Inch	Inch	Sec.			
	Ø .866	Ø1.181	2.756	656	* 2893	.0079	22.85	.157	.110	62			
	* 3000	* 3000 r.p.m. is used.											

Drill bigger holes using lower power spindles. Increase flexibility and occupy fewer tool positions in CNC machines.

Replace your end mill with an NC helix drill. Make the impossible become possible >>

			Exampl	e 6							
Tool Path : 2.047"	Rough Slotting										
	Slot D	imension		W: 0.669"	x 0.709" x	c 2.756"					
0	Materi	al		S45C (JIS), Medium Carbon Steel							
	Tool			99323-016-2030 M08-HD17-2030							
	Insert			N9MX070204-NC2032							
	Machine			BT40							
	Coolai	Coolant			Internal coolant, emulsion						
_ ↓ ້ອ	Dc	L	Vc	S	f	F	Р	Т	Q		
⁶ 0	Inch	Inch	SFM	r.p.m	IPR	IPM	Inch	sec.	In. ³ /min.		
.0.0	Ø .669	2.756	656	3800	.0039	14.82	.157*	91	2.075		
	* Rampi	ng depth p	er cut = 0	079"							
Notch of Tool Dath : 5 020"				Por	ich Slot	ting					

Notch of Tool Path : 5.039"				Rough Slotting							
	Slot Di	mension		W: 1.575" x 0.984" x2.756"							
	Materia	al		C95400, Aluminium Bronze							
	Tool			99323-020-2540 M10-HD22-2540							
	Insert			N9MX100306-NC2032							
	Machir	ne		HAAS BT4	10						
	Coolar	nt		External / Internal coolant							
	Dc	L	Vc	S	f	F	Р	т	Q		
9847.	Inch	Inch	SFM	r.p.m	IPR	IPM	Inch	sec.	In. ³ /min.		
0.00	Ø .866	.984	1148	5000	.0079	39.50	.197	23	12.937		

▶ One tool performs multiple patterns. >>

			Example	e 7							
	Mate	rial	AL6061T6								
	ΤοοΙ		99323-016-2030 M08-HD17-2030								
12	Insert		N9MX07020	4-NC5074							
	Machine		HAAS VM-3	, BT40, 22.5k	Ŵ						
	Coolant		Internal								
	Fig.	Dc Inch	Vc SFM	S r.p.m	f IPR	F IPM	P Inch	T sec.			
3 4	1	- Ø .669	656	3800	.0059	22.42	.157	67			
	2		656	3800	.0059	22.42	.157	80			
	3		656	3800	.0059	22.42	.157	95			
	4		656	3800	.0059	22.42	.197	101			
Tool Path 1	2			3		4					

Not only a drill, but an end mill too. Maximum ramping angle is 20°. Small radius path to cut holes, countersink holes, and create various cavity shapes in different materials.

Less inventory of different sizes of drills and indexable end mills, NC Helix Drill cuts it all !

No Need To Choose Nine9 Does It All

